平衡技术、分色校正技术、高分辨率图像拼接融合等方法,保证岩心图像的高质 量。 ②用途:岩心表面图像是岩心能够展示的最直接、最基础的信息,最早应用于石 油勘查,目前该项技术已经广泛应用于固体矿产勘查、科学研究等领域。很多岩 心在长期保管后,由于风化作用,其表面颜色及含油特征等都发生了很大变化, 很难反映原始的岩矿实际,给观察利用带来很大困难,因此在岩心取心初期即对 岩心进行扫描,可保留其最原始的表面图像信息。 在固体矿产勘查领域,岩心扫描图像可以用于对比观察,通过综合观察岩心扫描 图像、岩性描述及其他测试分析数据等,可以对岩心有初步的认识,甚至可以对 一些矿物进行初步的鉴定(图 1);在油气勘查领域,利用表面图像中颜色的差 异,可以对岩心的粒度、孔隙度、裂隙度等进行半定量的计算。
图 1.岩心扫描图像对比观察图 【(2)荧光扫描】①原理:荧光扫描通过特殊的紫外光源照射岩心,有机质在 紫外光的激发下能发出荧光,通过荧光信号采集、处理,含油岩心以其所含烃类 物质的荧光特性显示出明显的可识别性(图 2),在图像中对其面积进行定量计 算,得到含油指数等综合数据。 ②用途:应用图像处理及模式识别理论和数学地质方法,进行层理分析、荧光评 级、裂缝分析、孔洞分析和砂砾岩砾石定量分析计算,并自动生成图文报表,为 研究部门迅速准确地提供各种相应的研究数据,为油气田的储层精细评价、油藏 精细描述及成像测井定量分析等相关技术的发展起到很大的推动作用。因此可以
通过荧光扫描确定油气勘查岩心或岩屑的含油性质、含油级别及含油饱满程度 等。
图 2.荧光扫描效果图 【2.化学参数信息采集】岩心的化学参数主要是矿物构成和元素浓度。在矿物构 成扫描方面,主要应用颜色光谱技术,该技术起源于遥感领域应用的“地物光谱”; 在元素浓度扫描方面,X 射线荧光光谱(简称 XRF)分析技术是一种新的分析 技术,但经过多年的探索以后,现在已经完全应用成熟,广泛应用于冶金、地质、 有色、建材、商检、环保、卫生等各个领域。 【(1)高光谱矿物扫描分析】①原理:基于反射光谱分析技术,利用光谱仪采 集和测量岩心在 4002500nm 波长范围内的反射波谱,依据其光谱诊断性特征来 计算和识别不同的矿物,最终形成矿物学信息。 ②测试矿物种类:目前市场应用成熟的技术为中低温蚀变矿物(一般为含水硅酸 盐矿物)的识别。如在可见光近红外区域(4001000nm)可识别矿物:铁氧化 物矿物、含铁矿物、稀土矿物等;在短波红外区域(10002500nm)可识别矿物: 烃类物质、含羟基类矿物、磷酸盐类矿物、硫酸盐类矿物、碳酸盐类矿物等,具 体见表 2。此外据调研,高温蚀变矿物(无水硅酸盐矿物,如石英,长石,辉石, 石榴子石,橄榄石等)的光谱扫描技术在实验室也已经成熟,但尚未做市场应用。 【高光谱技术识别矿物种类汇总:】 AlOH:钠云母、白云母、伊利石、叶蜡石、蒙脱石、高岭石等。 FeOH:绿脱石、铁蒙脱石等。 MgOH:绿泥石、滑石、绿帘石、金云母、叶蛇纹石、透闪石、角闪石等。 SiOH:乳白石英石、异极矿等。 碳酸盐类:方解石、白云石、铁白云石、菱镁矿、菱铁矿等。 硫酸盐类:明矾石、黄钾铁钒、石膏。 ③用途:在固体矿产勘查领域,矿体往往与蚀变作用在空间上具有某种特定的关 系,如斑岩型铜、钼矿的矿体往往与钾化带(特征矿物为钾长石、黑云母、石英) 和石英绢云母化带(特征矿物为石英、绢云母、黄铁矿)关系紧密,可作为寻找
斑岩型铜矿标志;而钨、锡、钼、铋等高温矿物,也常与云英岩化(特征矿物为 石英和白云母)等高温蚀变作用关系紧密。蚀变作用的发育范围大于矿体的范围 或与矿体有固定的上下关系,因此通过对矿山岩心进行高光谱扫描,掌握重要蚀 变作用的发育特征,从而可以在空间上预测矿体的产出位置。 此外,高岭石、蒙脱石等含水硅酸盐矿物一般为采矿过程中的有害矿物,利用高 光谱扫描技术对这类矿物的识别度很好,通过对地质勘探钻孔进行高光谱扫描, 对高岭石、蒙脱石等矿物进行三维建模(图 3),能够很好地指导采矿工作,降 低采矿成本。
图 3.矿山光谱扫描三维模式图 【(2)XRF 岩心扫描】①原理:X 射线荧光光谱(XRF)分析技术根据分辨 X 射线的方式,分为波长色散 X 射线荧光光谱仪(WDXRF)和能量色散 X 射线荧 光光谱仪(EDXRF)。X 射线是一种波长较短的电磁辐射,通常是指能量范围 在 0.1—100KeV 的光子。当用高能电子照射试样时,入射电子被试样中的电子 减速,会产生波长连续 X 射线谱。如果入射光束为 X 射线,试样中的元素内层 电子受其激发,可产生特征 X 射线,称为二次 X 射线,或称为 X 射线荧光。通 过分析试样中不同元素产生的荧光 X 射线波长(或能量)和强度,可以获得试 样中的元素组成与含量信息,达到定性和定量分析的目的。 ②测试元素种类:利用 XRF 分析技术可以同时测量样品中从铝 AI(或 Mg)到 铀 U 的绝大部分元素的浓度分布图,从微量到高浓度均能反映出来。 ③用途:提供岩心样本的化学数据,一般用于陆地、海洋、湖泊、河口、冰河的 沉积岩心分析,研究沉积环境和古气候。如通过对 Fe、Ca、K、Si、Al、Ti、Zr、
Sr 等元素含量的变化(图 4),转化为沉积物中 Fe2O3、CaO、K2O、SiO2、 Al2O3、TiO2 等化合物含量的变化,综合其磁化率、孢粉、硅藻、矿物、色素 等多种指标,对环境指标和古环境演化进行重建。
图 4.沉积物岩心 Fe、Ca、K、Si、Al(自上而下)元素浓度变化曲线 此外,也可作为固体矿产岩心有用元素浓度的变化趋势、划分地层的重要数据。 例如在加拿大马塔加米 ZnCu 矿床,运用便携式 X 荧光检测方法获取元素浓度 数据,利用 Ti/Zr 对 Al/Zr 图可以迅速的区分矿区内两个视觉上相似但是变质程 度 不 同 的 流 纹 岩 岩 心 ( 图 5) , 而 其 中 一 种 流 纹 岩 为 钻 探 的 标 志 层 (Rossetal.[5],2014)。在钻探领域,识别标志层至关重要,可以帮助钻探者准确 地确定目的层,做出一些类似于“是否到达了目标地层层位,还是应该向更深处 钻探”等一些重要决定。
图 5.利用元素浓度相图区分地层并识别标志层(据 Rossetal.,2014) 但是,目前 XRF 定量分析仍以硅酸盐类岩石矿物为主,在其他类型的矿石矿物 中的应用有限(主要问题在于对标样和待测试样的基体匹配要求比较苛刻,而固 态制样技术实现难度较大),目前铁矿、铝土矿等的 XRF 测定已有国家标准方 法,其他类型的矿物 XRF 分析方法的应用不是很广泛。有些硫化矿的分析方法 正开发研制中。 【3.物理参数信息采集】如前所述,物理参数包括 CT 内部结构构造扫描,该技 术源自于医学领域,目前在油气资源勘查领域应用广泛;磁化率扫描,该技术在 固体矿产勘查领域应用较为广泛;同时还有一些原本应用于油田测井、录井的技
术,目前也已经被应用于岩心扫描领域,如 P 波速度扫描、伽马密度扫描、电 阻率扫描等。 【(1)CT 三维扫描】①原理:CT 扫描利用 X 射线的穿透性,对不同密度的物 质有不同的穿透能力,密度越高,穿透能力越低,当 X 光束围绕物体旋转扫描 时,从数百个角度进行扫描,计算机负责收集所有信息,并将这些信息合成为三 维图像。 ②用途:利用 CT 扫描技术,可以定量计算岩心内部裂缝宽度、长度、面积、面 孔隙度及裂缝孔隙度等参数,计算岩心中孔洞的大小,观察孔洞的联通状态(图 6)。该技术主要应用于油气资源勘查领域,对油气资源可采储量计算、驱油机 理研究等方面有重要参考价值,可以更直观更精确地认识剩余油在油藏中的微观 分布。三维重建岩心样品三维重建孔洞三维重建裂缝。
图 6.CT 扫描三维岩心及内部孔洞、裂缝重建示意图 【(2)磁化率】①原理:岩石、矿石均具有一定程度的磁化率,其磁化率的大 小主要取决于岩石的矿物成分、岩石结构、矿物颗粒大小和形状等因素。通过岩 心对磁化率的测定及其变化规律的研究,建立磁化率与成矿元素含量、环境变化 等的关系,从而作为找矿和环境研究的辅助性数据。 ②用途:磁化率测定应用广泛资源勘查和环境研究。在资源勘查领域,研究磁化 率与成矿元素含量的关系,可以对找矿勘查进行指导。如王磊等(2012)在智利月 亮山铁氧化物铜金型矿床勘查中,利用磁化率对铁磁性矿物及蚀变岩的现场识别 能力和 XRF 快速分析元素含量功能,结合矿床地质划分岩相,确定磁化率和铁、 铜含量对应关系:高磁化率-高铁含量-磁铁矿型、低磁化率-高铁含量-赤铁 矿型、低磁化率-低铁含量-蚀变岩型,对月亮山矿区进行深部找矿预测。 此外,在环境磁学领域,岩心磁化率的扫描测定,获得沉积物的磁学性质,可以 研究过去和现在的环境状况,如孟庆勇等(2009)通过对浙闽沿岸泥质带的长 岩心 EC2005 进行的磁化率岩心扫描及对比研究,发现磁化率随粒度及沉积环 境的变化而变化,从而建立磁化率与环境之间的变化机制。 【(3)其他物化参数扫描】①P 波速度——P 波是传播速度最快的地震波,在 地球物理和地震研究领域使用稍多,利用 P 波在不同界面的反射性质,可用于 研究地球内部结构构造。 ②伽马密度——用于测量岩层的密度,密度测井是划分煤层、划分致密岩层中的 裂隙带,以及研究渗透性岩层孔隙度的有效方法。 ③电阻率——主要用于油气钻探录井,因为含油层具有明显的高电阻特征。
【各种扫描信息采集方法的主要技术参数】 目前应用成熟的扫描数字化方法繁多——如前所属,能够测试的参数大约 10 余 种,每种测试方法适用的岩心种类,以及对岩心完整情况等的要求也不尽相同。 【几种主要的岩心扫描信息采集技术方法种类及对岩心的要求:】 【白光扫描】对岩心要求:平扫对岩心性状无要求,滚动扫描必须为完整岩心。 特点:扫描速度快,约 50 米/小时。 【荧光扫描】对岩心性状无要求。特点:扫描速度快,约 50 米/小时。 【高光谱扫描】对岩心性状要求不高,但完整的岩心数据精度较好。特点:扫描 速度快,约 50 米/小时。 【XRF 扫描】高精度的须剖开且平整的岩心,破碎岩心可扫,但精度较低;手 持式的对岩心性状无要求。特点:扫描速度取决于采样点的间隔大小,一般 15~20 秒测试一个采样点,如果采样间隔为 1 厘米,扫描速度约为 2.4 米/小时。 【P 波】完整或剖开岩心,破碎岩心可测但数据精度较低。 【伽玛密度】完整或剖开岩心,破碎岩心可测但数据精度较低。 【磁化率】环状扫描为完整岩心,点状扫描为剖开岩心,破碎岩心可测但数据精 度较低。 【电阻率】完整或剖开岩心,破碎岩心可测但数据精度较低。 【自然伽玛射线传感器】完整或剖开岩心,破碎岩心可测但数据精度较低。 【岩心扫描技术方法应用分析】 【适用范围分析】岩心扫描技术作为一种便捷、高效、成本低、无损化的技术方 法,既适用于实物地质资料馆藏机构,也适用于地勘单位和工矿企业。对于馆藏 机构而言,开展岩心扫描信息采集工作,将提取的数据以钻孔为单位进行集成, 可以将实体岩心数字化,建设“虚拟岩心库”,既能够提高服务效率和服务水平, 也可以大大延长珍贵岩心的服务寿命。对于地勘单位和工矿企业而言,一方面大 量重复的岩心经过扫描后即可进行处置(缩减、埋藏或清除),既降低保管成本, 又减少资料损失;另一方面,岩心在钻探取心的第一时间进行扫描,可将岩心最 原始的物化性质记录下来,尽可能降低后期环境对岩心造成的影响,提高数据质 量;此外,通过对岩心扫描数据的获取与分析,还可以直接指导找矿、采矿等工 作。 【适用对象分析】每种岩心扫描的方法,均与岩心的状态(完好、破碎)、种类 (固体矿产、科钻、环境调查、地应力等)以及岩心扫描技术本身的特点有关。 不同的岩心适用于不同的扫描技术方法,选择正确的扫描方法既能确保后期数据 的质量,同时也可提高数据的利用价值,具体每类岩心适用的扫描技术方法归纳 如下: (1)固体矿产勘查岩心:此类岩心数量大,越是矿体部分,岩心越较为破碎, 矿物组成、元素浓度等化学参数相对于其他参数更为重要,因此建议对于该类岩 心开展的扫描方法包括:全岩心的图像扫描、高光谱矿物扫描和磁化率扫描,由 于 XRF 元素浓度扫描速度慢,且对岩心要求较高,因此建议钻孔中关键层位或 需要做补充研究的深度范围采用 XRF 元素浓度分析扫描。 (2)科学钻探岩心:此类岩心获取成本高、数量少、研究价值大,十分珍贵, 因此建议尽可能多地扫描各种物化参数。建议开展该类岩心的全岩心图像扫描、 高光谱矿物扫描、XRF 元素浓度扫描、磁化率扫描、CT 结构构造扫描和伽马密 度扫描。
(3)环境调查与评价岩心:经筛选后进行保管的此类岩心数量少且一般很完整, 针对其研究目的,建议开展全岩心的图像扫描、XRF 元素浓度扫描和磁化率扫 描。 (4)油气调查岩心:此类岩心取心数量少,且一般较为完整,岩心的粒度、孔 隙度、裂隙度等参数是含油储量及驱油机理的重要评价因素,因此相对于化学参 数,油气岩心的结构构造等物理参数更为重要。建议对于该类岩心要开展全孔岩 心的白光图像扫描、荧光图像扫描、CT 扫描和电阻率和伽马密度扫描。 (5)地应力钻孔岩心:此类岩心数量少,建议进行全岩心的图像扫描、CT 扫 描、P 波速度扫描、伽马密度扫描。
本司经营磁法设备(钾光泵磁力仪,矢量磁力仪,高精度磁力仪,质子磁力仪 岩心扫描仪(石油天然气 ,岩土工程,金属及煤矿,便携及高光谱 放射性咖玛能谱仪,合金分析仪及电法设备。 地面航空伽马能谱仪,地面航空磁力仪,磁化率电导率仪,重力仪,岩心扫描仪, 岩心光谱扫描仪,磁化率仪,矿石分析仪,合金分析仪等物探设备,质量保证, 欢迎咨询洽谈。
PGIS-2 手持伽马能谱仪/车载或航空伽马能谱仪
HH-100/BP-200C 系列便携式伽马能谱仪
GSMP-35 地面航空钾光泵磁力仪
GSM-19T 标准质子旋进磁力仪梯度仪系列(加拿大)
GSM-19 高精度 Overhauser 磁力仪以及梯度仪系列(加拿大)
KT-10 全系列磁化率仪(加拿大)
CG-6 重力仪
DMT 岩心扫描仪
HyLogger/zero 高光谱岩心扫描仪 同时承接低空 UXO,管线巡检,考古等航磁项目! 岩心分析,石油、页岩气等 放射性检测项目!
电话:18510525249 传真:010-62669598 邮箱:zkdl010@yeah.net 网址:www.czkdl.com 北京中科地联科技发展有限责任公司